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Abstract— Mobile ad-hoc networks allow wireless devices to
freely communicate without the need of any fixed infrastructure.
Although many of the emerging applications share the need for
multicast communication, their requirements regarding reliable
data delivery strongly differ. One single multicast service will
thus not provide an acceptable solution for different application
and network scenarios. Instead, a multicast service’s flexibility
and adaptivity is required in both respects, in order to yield good
performance. In this context, application-layer multicast services
appear promising: As they rely on so-called overlay networks for
data dissemination, they do not require network-wide support
and can thus easily be optimized for specific scenarios. We in
this contribution propose a novel architecture for the flexible
composition of scalable application-layer multicast services. To
do so, we subdivide the latter into different modules, such as
transport and overlay routing. By making modules arbitrarily
interchangeable, we increase a service’s adaptability and facilitate
its development. The service’s scalability is generically ensu-
red, by including our approved technique of Local Broadcast
Clustering, which is applicable to arbitrary overlay-multicast
algorithms, inside the architecture. As we additionally abstract
from a specific network access, developed services can easily be
operated and evaluated on top of different network technologies,
comprising event-based network simulation software as well as
true WLAN-capable devices.

I. INTRODUCTION

Mobile ad-hoc networks (MANETs) consist of mobile de-

vices, that communicate via the wireless medium without any

fixed infrastructure. While two devices located in one another’s

transmission range communicate directly, intermediate devices

bridge distances between farther nodes. As multi-hop com-

munication is thus enabled, a complex and potentially highly

dynamic wireless network arises. Here, many application share

their need for multicast communication. Indeed, cooperating

and thus communicating groups will be present in the majority

of educational, touristic, rescuing or military scenarios.

From a multicast protocol’s point of view, high-level app-

lications mostly differ in their emitted network traffic as well

as in their requirements regarding the efficient and reliable

delivery of data. A protocol’s task is to map these requirements

on the communicational capabilities available in a specific

network scenario. To maximize performance, multicast ser-

vices will thus need to be tuned in the context of specific
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Research Foundation (DFG) within the SPP 1140.

applications on the one hand, and network scenarios on the

other hand. Whenever this context changes, protocol mecha-

nisms will need to adapt in order to maintain performance.

The integration of multicast services on the network layer of

wireless devices (as e.g. proposed in [1], [2]) thus shows to be

complicated, as the desired degree of adaptability can hardly

be provided network-wide. A more convenient solution can be

found in application-layer approaches. These link a multicast

group’s members using unicast tunnels, resulting in a logical

network topology called overlay network. While the latter is

used for forwarding multicast packets between group members

using ordinary unicast schemes, protocol mechanisms and

computational effort is entirely left to group members, and can

thus easily be optimized for single applications. Intermediate

(routing) devices may remain unaltered, as they are required

to provide support for unicast routing only.

In the past years, application-layer multicast has been a

growing research area, in the fixed Internet as well as in

MANETs. Various proposals employing different overlay to-

pologies and routing strategies (e.g. shortest-path-based [3],

hierarchical [4], [5], ring-based [6] or source-routing [7]) for

data dissemination have been made. Protocol evaluation in

most cases is restrained to the measurement of common values

within simulation environments, such as link stress or control

flow overhead. Although these factors are fundamental for

the proper characterization of application-layer protocols, two

essential issues often remain unaddressed. On the one hand,

the evaluation of data delivery is mostly done in the context of

simulated CBR streams using different loads. The protocol’s

efficient functioning, when opposed to traffic emitted by

true applications in real-world environments, thus remains

questionable. On the other hand, evaluations of application-

layer protocols usually leave reliability to TCP [5]. As the

latter is known to achieve unsatisfactory results over MANETs

in its standard implementation [8], various proposals have

been made to increase its efficiency over MANETs [9]. The

achievement of optimal performance using one single transport

protocol for different multicast applications and network sce-

narios however is uncertain. We argue that especially transport

mechanisms as well as routing algorithms must be tuned,

in order to maximize performance in the context of specific

application and network scenarios.

When developing efficient application-layer multicast ser-
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vices, it thus seems inappropriate to fix the developed service

to one specific overlay-multicast algorithm or reliability me-

chanism. Keeping the service’s flexibility in every possible

respect becomes a key factor for achieving good performance

in the context of different applications. We in the following

section thus propose a novel software architecture: Because

of its design, the architecture allows the modular composition

of scalable application-layer multicast services for mobile ad-

hoc networks. Modules hereby comprise optimized reliabi-

lity mechanisms, arbitrary overlay-multicast algorithms and

generic performance extensions for overlay topologies. By

fixing interfaces, modules become interchangeable, leading

to flexible, scalable and highly adaptable multicast services.

Additionally, the architecture enables the operation of services

inside network simulation software as well as on real WLAN-

capable devices without any changes of source code. We thus

not only support the simulative evaluation and the respective

tuning of single protocol mechanisms. Instead, we also facili-

tate the service’s migration between simulation and real-world

environments, and thus enable its evaluation in the context of

true MANET applications.

Note that this contribution is on presenting the architecture

only: Neither the detailed description of overlay-multicast al-

gorithms and reliability mechanisms, nor extensive evaluations

are subject of this paper.

II. THE MODULAR ARCHITECTURE FOR

APPLICATION-LAYER MULTICAST (MAAM)

In this section we present the Modular Architecture for

Application-Layer Multicast (MAAM). Conforming to aspects

of modular protocol design [10], we with this architecture

enable the flexible composition as well as the easy adaptation

of application-layer multicast software to different applicati-

on and network scenarios. In Section II-A, we first give a

brief overview on the architecture and list its most attractive

features. As the MAAM defines modules following an object

oriented design, Section II-B discusses the modules’ responsi-

bility and interchangeability by presenting the employed object

classes and interfaces. Section II-C clarifies the architecture’s

event handling as well as the modules’ interaction at the

example of data forwarding.

A. Overview and Features

The MAAM is an object-oriented framework for the mo-

dular composition of scalable application-layer multicast ser-

vices. The framework enables a protocol’s adaptability by

identifying different interchangeable protocol components. As

can be seen from Figure 1, the framework thus decomposes a

multicast software into different sub-layers. These comprise

• an application sub-layer implementing a user interface

and emitting multicast traffic,

• a transport base sub-layer that integrates customized

protocol mechanisms reflecting the application’s requi-

rements regarding reliability,

• a multicast base sub-layer that handles data forwarding

and manages a member’s connectivity inside the multicast

group,
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Fig. 1. The MAAM’s division into sub-layers.

• a packet queue sub-layer that integrates different packet

managing strategies.

All sub-layers are designed as modules that by source code

compilation are unified into one single executable application.

One of the MAAM’s main aims is in defining fixed interfaces

between these modules, in order to make all of them arbitrarily

interchangeable and thus easily reusable as well as compara-

ble. By doing so, the MAAM facilitates a protocol’s adaptation

e.g. by allowing the combination of different acknowledgment

strategies (implemented by different transport modules) with

diverse overlay topologies (made available through different

multicast base modules).

In previous studies, we presented our technique of Local

Broadcast Clustering (short LBCs1). We showed that the use of

LBCs avoids the most important scalability issues of overlay-

multicast algorithms in MANETs, and thus leads to drastic

performance increases [11], [12]. We thus decided to include

generic LBC support in the MAAM. By doing so, we make the

LBC extension available and applicable to arbitrary overlay

topologies. Note that the LBC support is not directly visible

in figure 1, as it transparently incorporates in transport and

multicast bases.

As common for P2P software, the MAAM requires a base

system providing network access. To achieve a high degree of

portability, we in this work slightly extend a base system’s

responsibility. As can be seen from the bottom of Figure

1, a base system in our case not only provides network

access, but also timeout scheduling. Our architecture thereby

gets completely independent of a specific operating system,

as it no longer contains any close system interaction. This

however requires the architecture to be bound to a base system

using a wrapper that encapsulates system specific issues, such

as e.g. socket and timeout management. Summarizing, our

architecture offers

• the modular integration of transport mechanisms tailored

to a specific application’s requirements and arbitrary

overlay-multicast algorithms,

1A short summary of Local Broadcast Clusters and their effects on
application-layer multicast services is given in the appendix at the end of
this document.
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Fig. 2. Simplified inheritance diagram for the Modular Architecture for Application-Layer Multicast.

• standardized interfaces between all modules,

• full interchangeability of modules and thus easy perfor-

mance comparisons of modules,

• generic scalability enhancements using our approved Lo-

cal Broadcast Clustering technique,

• flexible composition of overlay-multicast software by re-

using previously implemented modules,

• a portable design that can be bound to arbitrary base

systems using respective wrappers,

• a system-independent operation and thus simple migra-

tion of services e.g. between event based simulation

environments and real-world devices.

B. Modules and Interfaces

This section presents the MAAM’s most important modules

and discusses their particular responsibilities and interfaces.

The object oriented design, guaranteeing the arbitrary inter-

changeability of modules, is shown in Figure 2. The diagram

differentiates between Interface Classes and Implementation

Classes. The former are required for interface declaration and

contain methods and member variables that we identified as

elementary for the interaction of the MAAM’s sub-layers (cf.

Figure 1). Implementation classes usually extend an interface

class, in order to integrate true functionality such as overlay-

multicast algorithms or acknowledgment strategies. The follo-

wing sections thus mainly focus on interface classes, as they

reflect the architecture’s properties.

1) Agents: form the super class of every module that

integrates functionality. Agents know on which node n they

run (e.g. for accessing packet queue sub-layer), and of which

parent application pa they are part of. Both of these parameters

are set when initializing the agent using its init constructor.

2) Data Flow Agents: are derived from (standard) agents

and extend their interfaces for the handling (sending and

receiving) of data packets2. They thus form the super class

of modules that actively process multicast packets or their

headers.

3) Applications: While true multicast applications will

most likely handle user input via complex user interaction,

we for the development of the MAAM restrain the interface

of application modules to basic functionality such as startup

and finalization. As application modules will process multicast

packets, they extend data flow agents and refine the latters’

interface by the elementary methods mentioned above. Note

that during its initialization, it is the application’s task to

configure the multicast service that will be used for data dis-

semination: Indeed, when created, an application instantiates

a specific transport as well as a multicast base module. For

passing multicast data between modules, the latter are then

linked by setting the modules’ respective member variables

2When speaking of data packets, we refer to packets containing true
multicast data and not e.g. control packets or acknowledgments.
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(transport modules e.g. disseminate data using a multicast base

mb, while the latter hand received data to a transport t). After

its initialization, an application however is only required to

know what transport module t it uses for data dissemination

and on which port p it runs.

4) Transport Bases: implement reliability mechanisms as

required by a specific application. Their main task will thus

be to integrate the handling of packet losses, by acknowled-

ging data and triggering/performing packet retransmissions. To

achieve optimal performance, these procedures are required

to be tuned depending on an application’s characteristics.

Indeed, the use of positive or negative acknowledgments (or

a combination of both) is known to have different effects

on latencies as well as throughput. In order to offer the

highest degree of flexibility, neither the strategy employed

for acknowledging data nor the (packet) format used for

acknowledgments is specified by the MAAM: It is entirely

left to transport module implementations. The latter can thus

be highly optimized, in order to accurately meet an applica-

tion’s reliability requirements. Although they usually will be

optimized for one application, transport modules may however

be used by other applications because of their exchangeability.

They can thus easily be evaluated and compared in the context

of different traffic scenarios. As transport modules directly

affect data dissemination, they refine the interface of data flow

agents by including two generic methods for setting up and

shutting down the transport3. For data forwarding, transport

modules additionally rely on a so-called multicast base mb

which is presented in the following section.

5) Multicast Bases: are responsible for ensuring a mem-

ber’s connectivity within the multicast group. Their interface

thus offers two abstract methods, join and leave, via which the

joining to and leaving from a multicast group can be trigge-

red4. As they provide group connectivity, multicast base modu-

les on the other hand also manage neighborhood information,

which is required for data forwarding and acknowledging.

Multicast base modules thus offer two additional methods,

getChildren and getParent. Note that both methods take an

address s as argument, as returned values will most likely

depend on the address of a specific multicast source: While the

first method is used for retrieving the next-hop nodes to which

multicast data is forwarded, the second method returns a list

of parent nodes from which e.g. packet retransmissions may

be requested. Although multicast base modules manage group

connectivity, they do not directly implement overlay-multicast

algorithms. Instead, the latter will be integrated by so-called

Overlay modules, which are explained in the following section.

6) Overlays: integrate entire overlay-multicast algorithms.

They will thus manage overlay connections to other group

members and be responsible for the routing of multicast data.

Since overlay modules (just as all modules) have a generic

interface, they may be used by arbitrary transport modules.

The latter are thus unaware of the overlay topology they

actually use for data dissemination. Note that overlay modules

extend communication bases, which provide the interface

3These will be called by the application when started or finalized.
4This triggering will usually be done by a transport module, when the latter

is set up or shut down using its respective methods.

used by transport modules. Transport modules will thus only

access the multicast base part of an overlay’s interface. This

differentiation between multicast bases and overlay modules

has been made in order to provide transparent support for

Local Broadcast Clusters. These (and the overlay module’s

additional interface methods) are explained in the following

section.

7) Generic Local Broadcast Clustering: Although we in-

cluded generic support for LBCs in our architecture, their

use is entirely optional and fully transparent for standard

transport and overlay modules. This is achieved by ma-

king the LBC functionality available through LBC and LBC

transport modules that extend multicast base and transport

base modules respectively. Applications will thus be unaware

of using an LBC transport module instead of a (standard)

transport module, as both provide the same interface from

the application’s point of view. When employing LBCs, group

members are connected either within the overlay, or inside an

LBC. Transitions between both states however are possible at

any time. The design goal of generic LBC support was to keep

additional functionality in overlay modules as low as possible.

To do so, an LBC module maintains a node’s connection state

and has full control over the overlay module o chosen by

the application. It can thus trigger processes for joining or

leaving the overlay, depending on the node abandoning or

entering the broadcast range of nearby overlay nodes. LBC

modules however have no knowledge about the actually used

overlay: they might thus be combined with arbitrary overlay

topologies. LBC modules e.g. are responsible for broadcasting

the LBC heartbeats, in case the node has presently joined the

overlay. Information about the node’s “strength” inside the

overlay is retrieved by calling the overlay module’s method

getHbInformation and included inside the heartbeats. When

receiving a heartbeat hb, an overlay node can compare its

own strength with the heartbeat sender’s strength, by passing

the heartbeat to the method checkHb implemented by the

overlay module. As the weaker node will retire from the

overlay (in order to become an LBC node), we can by

appropriately defining heartbeat information e.g. minimize

topology reconfigurations inside the overlay. When leaving an

overlay node’s broadcast range, LBC nodes will have to join

the overlay. To enable such nodes to quickly join an overlay,

overlay modules additionally offer a method joinThroughNode.

The latter takes the address n of a node as parameter, which is

known to currently have joined the overlay - this might e.g. the

overlay node to which the former LBC node was connected.

In analogy to LBC modules, an LBC transport module has

control over a (standard) transport module t. LBC transport

modules e.g. implement acknowledgment strategies optimized

for the (1-hop) broadcast delivery of data.

8) Packet Queues: are responsible for providing packet

management as well as different queuing techniques. Agents

register for specific packet types, by passing a type identifier t

and a callback c to the method registerPacket. When receiving

packets, a queue can thus directly pass the received data to the

registered callback. While standard packet queues will directly

hand packets p enqueued for a destination d to the network,

more complex queues can buffer and aggregate packets with
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Fig. 3. Simplified flow control chart exemplarily showing the MAAM’s data sending and forwarding processes.

the same destination, in order to save medium accesses.

Because of a packet queue’s exchangeability, the effects of

e.g. packet aggregation can easily be studied and compared.

9) Nodes and Wrappers: Nodes encapsulate information

which is maintained for single devices, such as e.g. a packet

queue q and a list of its running applications a[]. Node

structures are only of interest when operating the MAAM

within simulation environments, as the latter will usually

handle several nodes in parallel. A wrapper, as mentioned

in Section II-A, acts as a special layer, linking the MAAM

to one specific base system. It encapsulates system specific

issues that allow the sending and the reception of packets

on different ports. Additionally, a wrapper must handle the

scheduling of timeouts using functionality provided by an

operating system. This is done, by respectively implementing

the method startTimeout which accepts a delay d and a

callback c as arguments. All methods provided by a wrapper

are globally known to all MAAM modules, so that the latter do

not explicitely require a reference to the actually used wrapper.

C. Event Handling and Module Interaction

The MAAM is an entirely callback-driven architecture.

CPU time is thus spent inside the MAAM only right after

the occurrence of events (timeouts or packet reception). The

main execution loop is encapsulated by the wrapper. In case

of simulation environments, the wrapper itself will e.g. be

called by the environments core, as events occur for the

simulated nodes. In real-world environments, the wrapper

implements a main loop that listens on sockets and waits for

the occurrence of timeouts. As MAAM modules usually won’t

provide reentrant-safe code, wrappers must also make sure,

that only one event is processed at a time.

To clarify the interaction of modules, we in the following

briefly discuss the sending as well as the forwarding of data,

as it occurs for overlay nodes in case the MAAM’s LBC

extension is used. This process is shown in Figure 3. Note

that we omit the wrapper layer (which would be located on the

diagram’s right side) as it only translates the queue’s activities

into system calls. As can be seen, the application sends a data

packet (top part of Figure 3) by handing a packet object p to

its transport, which in this case is an LBC transport module.

As the node has joined the overlay, the LBC transport is

required to broadcast the data packet. The module does so

by passing a copy of the packet to its multicast base, which

in this case is the LBC module. After adding an individual

packet header, the latter enqueues the packet at the packet

queue for a broadcast destination. In addition to broadcasting,

the packet is then required to be forwarded along the overlay.

This is done by letting the LBC transport hand the packet to

the standard transport module. As added packet headers will

usually depend on the (overlay) next-hop, packet duplication

for data forwarding is done in the transport and not in the

overlay module. The former thus retrieves a list of next-hop

nodes5 from the overlay, to which packet copies are then

forwarded one by one. For the same reasons as for the LBC

transport (addition of packet headers), data is sent via the

transport’s multicast base and not directly via the packet queue.

Nodes having joined the overlay usually receive data

through unicast messages of overlay neighbors (shown by the

arriving UCAST message on the bottom part of Figure 3). The

queue extracts the packet’s type and invokes the respective

callback y with the received message as argument. For unicast

data packets, the callback will be implemented within the

Overlay module. The latter thus receives the packet, processes

its headers and passes the packet to its transport, which in this

case is the standard transport module. After processing and

removing its own packet headers, the transport module hands

the received packet upwards to the LBC transport. In analogy

to data sending (see above), the packet is then forwarded to

LBC nodes (via the LBC transport’s broadcast) and to overlay

neighbors (via the standard transport module).

The procedure of data sending and reception for LBC

nodes are similar. Difference are, that data packets are not

forwarded along the overlay, as the node is only locally

connected. Additionally, the packet queue will hand data,

which is received through broadcast messages, directly to the

LBC and not to the overlay module.

III. SUMMARY AND FUTURE WORK

In this contribution we presented our Modular Architecture

for Application-Layer Multicast. By decomposing application-

layer multicast services into interchangeable modules, we on

5Note that the retrieved list of next-hop nodes depends on the multicast
packet’s source, which in this case is the node itself.
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Fig. 4. Local Broadcast Clustering applied to overlay topology.

the one hand enable the service’s adaptation in the con-

text of different application and network scenarios. On the

other hand, we simplify its development on the whole, by

making protocol components reusable: The development of

application-layer multicast services thereby can become as

easy as plugging different, previously implemented modules

into a new executable application. Scalability issues, arising

from the service’s application-layer nature, are improved by

including our technique of Local Broadcast Clustering, which

generically extends any overlay topology implemented within

our architecture. Since we additionally abstract from a specific

network access, developed services can for evaluation purposes

easily migrate between various network environments: Overlay

topologies and reliability mechanisms may, in a first step, be

tested and optimized within event-based network simulation

software. In a second step, they may then be used by true

applications on real devices, without any changes made to their

source code. As the testing and the tuning of application-layer

multicast services is thus greatly simplified, we look forward

to providing extensive evaluations and functional MANET

multicast software in the near future. Our ongoing activities

in this area will be made available under [13].

APPENDIX

LOCAL BROADCAST CLUSTERING

When operated in wireless environments, application-layer

multicast services suffer from severe scalability issues. Indeed,

because application-layer multicast services forward data using

ordinary unicast transport links, the wireless medium will

be increasingly stressed as soon as many group members

are located (physically) close to one another. As the low

bandwidth available in wireless environments will have to be

shared by many devices, multicast throughput is likely to drop.

Additionally, areas of increased group member density will

require many devices to synchronize for medium access. Until

synchronization is reached, collisions and growing back-offs

will occur, resulting in raising latencies.

Local Broadcast Clusters (LBCs, as seen in figure 4) en-

hance the scalability of application-layer multicast services by

making use of the wireless medium’s broadcast capability:

Group members having joined the overlay broadcast any

received multicast data. As data is forwarded to any group

members within transmission range, the latter are not required

to join the overlay and thus become locally joined nodes.

Overlay nodes additionally periodically broadcast dedicated

heartbeat messages. By doing so, they form their LBC and

signal their presence to locally joined nodes. As soon as a

locally joined group member moves out of an overlay node’s

broadcast range, it will cease to receive multicast data as well

as heartbeat messages. It is thus required to join the overlay, in

order to be included in the latter’s data dissemination process.

In analogy, an overlay node receiving heartbeat messages may

retire from the overlay, since it finds itself within broadcast

range of a nearby overlay node and thus receives the latter’s

broadcasted data. Using this dynamic overlay adjustment, the

area covered by the overlay’s nodes’ broadcast ranges is

continuously adapted to a multicast group’s circumference.

LBCs successfully reduce the number of medium accesses

required for data forwarding. Especially in areas of increased

group member density, node synchronization will be simpli-

fied, as only very few nodes are involved in data forwarding.

As additionally less nodes will join the overlay, overall control

flow required for the overlay’s maintenance is accordingly

decreased [11], [12].
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