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Abstract— Application-layer multicast protocols more and mo-
re appear as attractive multicasting approaches, as they combi-
ne increased customizability of protocol mechanisms with the
latters’ ease of deployment. Both features especially become
important in mobile ad-hoc networks, in which groups of users
running applications with diverging requirements share limited
network resources. The core of each application-layer multicast
protocol is the so-called overlay network. Since the latter is used
for data forwarding between group members, its topology as well
as its topology maintenance mechanisms have a direct impact on
the communication’s efficiency. Their design thus requires special
attention and detailed evaluations, with respect to potentially
involved cross-layer effects. In this contribution we propose a
novel overlay topology, which, because of its lightweight design,
features an increased performance. For evaluation, we rely on
simulative cross-layer analysis, in which we compare our protocol
to other application-layer multicast approaches as well as to a
simple n-times unicast strategy.

I. INTRODUCTION

Mobile ad-hoc networks (MANETS) consist of mobile de-
vices, that communicate via the wireless medium without any
fixed infrastructure. While two devices located in one ano-
ther’s transmission range communicate directly, intermediate
devices bridge distances between farther nodes. As multi-hop
communication is enabled, a complex and potentially dynamic
wireless network arises. Here, many application share their
need for multicast communication. Indeed, cooperating and
thus communicating groups will be present in the majority of
educational, touristic, rescuing or military scenarios.

From the success of Peer-to-Peer applications in the fixed
Internet arose the idea of moving multicast functionality to the
application-layer of user devices. There, packet duplication
and group management are handled by the multicast group
members’ themselves. Data packets are forwarded using a
so-called overlay network, which consists of unicast tunnels
interconnecting the group’s members. Multicast functionality
thereby becomes easily deployable, since the underlying net-
work is required to provide support for unicast routing only.
As it used for forwarding data packets, the overlay network has
a direct impact on the efficiency of application-layer multicast
protocols. Its topology is required to be maintained through
time, since the multicast group as well as the underlying
(physical) network can show a dynamic character: Indeed,
while user devices may join or leave a group at any time,
they also can show a certain degree of mobility, and thus
cause unicast tunnels to worsen with respect to a given metric.

Topology maintenance together with the propagation of current
(overlay) routing information involves a certain amount of con-
trol flow. Because bandwidth is a scarce resource in MANETS,
the design and the evaluation of an overlay’s topology thus
requires dedicated attention.

For the analysis of protocols, previous contributions mainly
refer to standard values, such as control flow measurements
on the application-layer, an overlay’s average link cost and
achieved delivery ratios. We however argue, that these kind of
measurements, by themselves, are not meaningful in environ-
ments such as MANETSs. In order to truly rate an overlay’s
efficiency, it here becomes a key factor to analyze potential
cross-layer effects of the traffic emitted on the application-
layer. Indeed, when e.g. using reactive routing protocols such
as AODV [1], setting up unicast tunnels can involve expensive
route discoveries on the network-layer. We thus dedicate this
work to the design and evaluation of an overlay topology that
minimizes cross-layer effects. To rate its efficiency, we com-
pare our protocol to existing solutions by directly measuring
the load induced by the different protocols on the MANET’s
physical layer.

The remainder of this paper is organized as follows. Section
IT briefly presents Narada and PAST-DM, two previously
developed application-layer multicast protocols. In section III,
we introduce TrAM, a novel overlay topology, which has
been optimized with respect to cross-layer effects. Section IV
compares TrAM to Narada and PAST-DM as well as to a
simple n-times unicast strategy, in the context of a standard
CBR and a chat application. Eventually, section V concludes
by giving a short summary and an overview of topics that will
be handled in future work.

II. RELATED WORK

Although initially developed for the fixed Internet, Narada
[2] shows to be a promising application-layer multicast proto-
col for MANETS. Indeed, Narada relies on a flexible mesh-like
topology and includes basic topology maintenance operations.
The latter let each group member periodically probe the link
quality to all other group members. When considered as
efficient, the link is included in the topology and the latter’s
routing. Accordingly, when considered as inefficient, an exi-
sting link is shut down. To prevent the overlay’s partitioning,
the protocol includes special mechanisms to enforce overlay
links to distant (and thus sub-optimal) nodes. Routing itself



is based on a reverse shortest path algorithm, requiring the
periodic exchange of link information between neighboring
nodes.

In contrary to Narada, PAST-DM [3] was developed for
MANETSs. It relies on a link-state source-routing algorithm,
which requires all group members to have a full view on the
overlay’s topology. This is achieved by letting each group
member periodically send all its known links states to its
neighboring nodes. Depending on the multicast group’s size,
the propagation of links states thus involves a potentially
increased control flow overhead. As, additionally, link-states
are propagated on a periodic base, the freshness of routing
information used by forwarding group members and multicast
sources is questionable. The protocol’s routing is thus likely
to become unstable in case of changes inside the overlay’s
topology. The latter can occur, as group members periodically
look for better or worsening neighbors in their vicinity.

III. TRAM - A CROSS-LAYER EFFICIENT OVERLAY

In this section we introduce TrAM, a novel overlay topolo-
gy. Its main design goals were to have little control flow with
respect to cross-layer effects, as well as a stable, flexible and
lightweight overlay topology, that takes a MANET’s dynamics
into account. TrAM acquires its lightweight character by
avoiding any redundant unicast tunnels within its topology. It
thus organizes the multicast group as a logical tree structure,
in which any of the tree’s members only know their successors
(children) and predecessor (parent) with respect of the tree’s
root node. This structure makes data delivery very easy, as
sending and forwarding nodes only need to transmit data
packets to their neighbors.

A. Tree Construction and Group Join

An initial condition to make the TrAM protocol work
properly is the existence of the tree’s root node. We let the
first joining node automatically create the multicast group
by declaring itself as the root node. Every node, that has
successfully joined the group, can reach this root node (pos-
sibly via multiple overlay hops) through its parent node. To
construct TrAM’s tree, any node wanting to join the group
has thus to find an existing group member that can work as
its parent. To do so, every joining node uses a parent discovery
process, during which it broadcasts so-called QueryParent
packets. As broadcasts have a limited time to live (TTL),
the latter is exponentially increased in case no reply from
existing group members is received. Group members receiving
a QueryParent packet can advertise themselves as a parent
node, by answering with a ParentAdvertise packet. The joining
node collects these answers for a short period of time and then
chooses the most suitable node as parent.

In order to estimate the connection quality to potential
parent nodes by objective criteria, a metric is required. For
the latter, TrAM uses two parameters: The layer-3 hop count
between the child and its parent on the one hand, and the
number of overlay hops from the parent to the root node on
the other hand. While for optimal connections both values
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Fig. 1. The process of topology maintenance.

are tried to be minimized, the layer-3 hop count is however
classified as more important. As this distance information is
included in the ParentAdvertise messages, the joining node
can decide through which parent it best connects to the
multicast group. Group connection is done by registering at
the chosen parent using a ConnectRequest packet. The parent
may either accept or reject this request. In case of acceptation,
the connection is confirmed with a ConnectAccept packet,
after which the requesting node has successfully joined the
group. The response contains further information about the
constructed tree, namely the entire overlay hop path to the
root node (PTR). With this knowledge, the newly joined node
can advertise itself to other joining nodes.

B. Tree Maintenance

To make the protocol adaptive in dynamic wireless envi-
ronments, the overlay’s reconfiguration is an important issue.
The distance between a node and its parent may increase,
causing other nodes to become more suitable for maintaining
a connection to the multicast group. For neighbor discovery,
nodes use the same process as for initially joining the group.
Nodes thus periodically broadcast QueryParent packets with
limited TTL. This TTL is calculated from the layer-3 hop
count to the parent increased by one. When connected to
the multicast group, QueryParent packets include the current
parent node’s address, the latter’s layer-3 hop distance as
well as the PTR length and the depth of the node’s subtree.
Nodes receiving QueryParent messages react accordingly. The
current parent node answers using a ParentHello in which the
updated hop distance and the current PTR are included. Other
group members receiving a QueryParent packet can, using the
information included in the packet, decide whether they would
be a better parent node for the emitting node. In this case, they
respond with a ParentAdvertise packet, including their layer-3
hop distance and their PTR length. Nodes that recognize to
be a worse parent to the emitting node, do not respond at all.
Depending on advertisements arriving at the requesting node,
the latter may either select a new parent, or stay connected to
its current parent.



The exact process is shown in Figure 1, in which a node
N currently is connected to the root R through node A.
When looking for its optimal parent node, N in a first step
broadcasts a QueryParent packet within the depicted search
area!. Because of the information included in the query, node
B recognizes to be a better parent for node N (since it lies one
layer-3 hop closer to N than A) and, thus, advertises itself in a
second step. As N gets aware of B, it decides to switch parent
nodes. This is done, by first connecting to the new parent B and
then, after the connection’s acceptation, disconnecting from
the former parent A. Node C remains quiet, as it, compared to
N’s current parent A, shows an increased PTR length and no
improve in layer-3 hop distance.

Because of the metric described above, all nodes tend to
align themselves to the root. In order to keep TrAM’s average
tree depth low and to improve the tree’s quality, the protocol
integrates a mechanism for redirecting root functionality. To do
so, all group members include information about their subtree
depth in their periodically sent QueryParent packets. Infor-
mation about a subtree’s depth is thus recursively propagated
towards the root node. In case the latter detects a subtree that
is more than two (overlay) hops deeper than any other subtree,
the redirection process is initiated. When doing so, the root
first sends a RedirectRequest packet to the preferred node,
waiting for a RedirectAccept or, if the target is not willing to
accept the redirection, a RedirectDeny.

C. Group Departure and Node Failure

When leaving the multicast group, a node unregisters at its
parent and child nodes using a special Disconnect message. For
reconnecting to the multicast group, the child nodes use the
standard parent discovery process mentioned above. Whenever
the root node wants to leave the multicast group, it, in first
step, is required to successfully redirect its functionality to one
of its child nodes.

Overlay-based protocols commonly get aware of node fai-
lures through consecutive losses of periodically exchanged
heartbeat messages. As described above, TrAM nodes peri-
odically query their parent node using QueryParent messages.
In case of consecutively missing replies (ParentHello), a parent
is declared as failed. The querying node thus reconnects to the
group using the standard neighbor discovery process. In case
of root node failure, its child nodes start the same reconnection
procedure. As they connect to each other, all children, except
one, will successfully locate a new parent node. After having
reached a maximum threshold for its QueryParent’s TTL, the
remaining node has failed to reconnect to a root node and thus
declares itself as the groups new root.

D. Discussion of TrAM’s Features

Using the described neighbor discovery process, TrAM’s
topology maintenance is for each node reduced to a single
broadcast with limited TTL and very few unicasts for potential
advertisement replies. Unlike other protocols, TrAM does, one

I'Note that the ParentHello returned by N’s current parent node, A, is omitted
for the sake of clarity.

the one hand, not cause the underlying (layer-3) routing to
set up many routes. While these are commonly required by
application-layer multicast protocols to probe the link quality
to potential neighbors, the process of route discovery however
can be expensive, and its use should thus be minimized. On the
other hand, TrAM, using its single broadcast, reaches a higher
number of potential parents with constant overhead, resulting
in an efficient and fast neighbor discovery mechanism.

Neighbor discovery plays an additional role considering
TrAM’s lightweight overlay topology. Unlike other protocols,
TrAM avoids any redundant unicast tunnels between nodes.
The latter usually exist in order to quickly adapt an overlay’s
routing in case of node failures. Failure detection however is
a slow process, as it relies on consecutive losses of periodic
heartbeat messages. While TrAM uses the same failure detec-
tion method, the routing’s repairing is equivalent to locating a
new neighbor using the standard node discovery process. Since
the latter is comparatively faster than the former?, TrAM, in
case of node failures, performs only slightly worse than other
overlay topologies. Because of its lacking redundancy, TrAM
however saves an important amount of control flow overhead.
The latter’s extent becomes visible in the next section, in which
TrAM is compared to other overlay topologies.

IV. EVALUATION

In order to rate an overlay’s performance, we, on the one
hand, consider it as important, not to restrain evaluations to one
single application scenario. We in this section thus compare
TrAM to other overlays in the context of a single-source CBR
and a multi-source chat application. On the other hand, we not
only measure standard values, such as achieved delivery ratios
and the observed latencies. To rate overlay topologies with
respect to involved cross-layer effects, we additionally measure
the medium access time. The latter sums the durations of
medium accesses network-wide for each second of simulation
time. This metric thus not only covers traffic emitted on the
application-layer, but also monitors overhead generated by
network routing and MAC?.

We limit evaluations to scenarios with pedestrian mobility,
ranging from 1 to 37. We let 30 nodes, that move according to
RPGM [4] with a mean cluster size of 3 nodes and a radius of
50m, join the multicast group within the first minute of simu-
lation time. 90 additional nodes move according to the random
direction mobility model. All nodes have a transmission range
of 175m and roam on a surface of 1000m by 1000m. While
standard 2@ IEEE 802.11b with its RTS/CTS extension is
used as MAC, AODV provides unicast routing on the network-
layer. All measurements are smoothed by averaging results of
20 different mobility scenarios and random seed values.

2As heartbeat periodicity is commonly set to 10s, node failure detection
often takes about 30s to 40s, i.e. 3 or 4 consecutively lost heartbeats. TrAM’s
node discovery process, however, usually locates nodes in less than 1s.

3Since accessing the medium is a highly energy consuming process,
measuring the network-wide medium accesses also allows a protocol’s rating
with respect to its energy consumption. Although interesting, we do not further
investigate this aspect in this contribution.
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Fig. 2.

A. Evaluating a Single-Source CBR Application

For evaluating a CBR application, we let a single source
multicast data packets with a size of 512 bytes. The source’s
traffic is varied, by increasing the number of packets sent per
second. Figure 2 left shows the delivery ratios achieved by
different overlay topologies. As can be seen, delivery ratios
for TrAM remain at a constant high level for a data rate of
up to 2 kbyte/s and drop only for a rate of 4 kbyte/s. While
a slight drop of Narada’s performance is already visible at 2
kbyte/s, results become unsatisfactory at 4 kbyte/s. The simple
unicast strategy, which lets the source directly unicast packets
to all group members, shows a worse performance than TrAM
and Narada. This can be explained by its inefficient data for-
warding, that overburdens the medium in the source’s vicinity.
Surprisingly, PAST-DM by far shows the worst performance of
all investigated protocols. As will be shown below, its topology
indeed involves too much overhead to cope with data rates
beyond 1 kbyte/s.

Latencies are an interesting first indicator for a protocol’s
overhead, since packet delays mostly arise from collisions
during packet transmissions and the MAC’s exponentially
growing back-off. Figure 2 center shows the latencies observed
during simulation experiments. As can be seen, TrAM and
Narada remain on an equally high level for a data rate of up
to 2 kbyte/s. While at 4 kbyte/s TrAM’s drop in performance
remains acceptable (latencies stay below 0.3s), results for
Narada drastically worsen to more than 1.5s. Because of too
much overhead, latencies achieved by the unicast strategy and
PAST-DM rapidly increase with the load offered by the source.
Note that, at the highest data rate, latencies drop for the unicast
strategy and PAST-DM. This directly results from the poor
delivery ratios achieved by both protocols: As packet drops
occur frequently, potentially highly delayed packet no longer
affect latencies.

To investigate the actual overhead generated by the pro-
tocols more closely, we in figure 2 right plot the network-
wide medium access time as defined above. Because of size
constraints, we only provide measurements for the data rate
of 1 kbyte/s, which we consider the most interesting. In the
first 60s simulation time (plotted on the x-axis), 30 nodes join
the multicast group. By doing so and depending on the used
overlay topology, they generate a specific overhead. The latter
becomes visible as peaks in the respective curves. As can be
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Evaluation of a simulated, single-source CBR application.

seen, in contrary to other overlay topologies, TrAM’s overhead
remains at a constant level. This can be explained by TrAM’s
highly efficient neighbor discovery process (c.f. section III-D),
which is used for joining the multicast group as well as for
topology maintenance. At 120s simulation time the multicast
source starts emitting traffic. This becomes visible through
the abrupt rise for all curves. The latter show that TrAM’s
topology involves the fewest overhead. Indeed, Narada causes
the medium to be accessed about 50% longer than TrAM
does. This can be explained through Narada’s more complex
topology which maintains redundant unicast tunnels and thus
causes more overhead. The simple unicast strategy accesses
the medium about twice as long as TrAM, which can be
ascribed to an increased length of unicast tunnels. Indeed,
since the source directly unicasts its packets to all group
members, routes to receivers are longer than for a protocol
which involves other group members in packet duplication and
forwarding. While PAST-DM initially shows a performance
comparable to the unicast strategy, medium accesses are
increasingly required during data transmission. As the medium
becomes heavily loaded, PAST-DM’s overlay routing gets
unstable and causes increasing overhead. At 540s simulation
time traffic generation is stopped, resulting in dropping curves
for all protocols. Interestingly, the remaining 60s simulation
time do not suffice to let PAST-DM’s topology recover from its
instability during data delivery. Indeed, PAST-DM’s medium
access time does not drop to the same level as right before
traffic generation is started.
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Fig. 3. Measurement of chat traffic.
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Fig. 4. Evaluation of a simulated, multi-source chat application.

B. Evaluating a Multi-Source Chat Application

For the realistic simulation of a chat application, an import
aspect is the modeling of traffic. We therefore monitored
conversations in typical chat rooms for a couple of days.
The “average user behavior” resulting from the obtained
measurements is shown in figure 3. The x-axis shows a user’s
idle time, which is the amount of time that elapses between
two consecutive messages sent by the same user. While on
the left y-axis the diagram shows the probability of a specific
idle time, the right y-axis denotes the message length the
user has generated within the respective idle time. Note that
raw measurements show a much finer granularity and were
condensed only for the sake of clarity.

We now oppose the different protocols to the traffic above
and vary the number of active sources. The results of simu-
lation experiments are shown in figure 4. As can be seen,
delivery ratios (plotted in figure 4 left) are on a very high
level (about 97%) for all (true) overlay multicast protocols.
The simple unicast strategy, however, does not scale with the
number of active sources. Indeed, as the number of routes
set up by the network-layer grows quadratically, the protocol
involves too much overhead. The latter also becomes visible
in the measured latencies, which are shown in figure 4 center.
The rapidly growing delays show that the unicast protocol
overburdens the medium, resulting in frequent collisions and
exponentially growing MAC back-offs. With latencies around
0.2s TrAM and Narada perform about equally well. PAST-
DM also copes satisfactorily with chat traffic, and achieves
latencies of 0.3s.

While TrAM, Narada and PAST-DM show good results in
terms of delivery ratios and latencies, the achieved performan-
ce comes at highly different cost. Figure 4 right shows the
measured medium access time for 18 sources, which generate
traffic between 120s and 540s simulation time. As can be seen,
TrAM in terms of involved network load, out performs the
other protocols. Indeed, while Narada accesses the medium
about 3 times as long as TrAM, PAST-DM involves 6 times
TrAM’s network load. The diagram also shows the unicast
strategy’s increased overhead and its collapsing communicati-
on between 300s and 490s simulation time.

V. CONCLUSION AND FUTURE WORK

In this contribution we proposed TrAM, a lightweight tree-
based application-layer multicast protocol that was designed
to minimize cross-layer effects. Using its unique topology
maintenance process, the protocol avoids redundant unicast
tunnels and thus saves an important amount of control flow
overhead. To compare our protocol to previous studies, we use
simulative cross-layer evaluations, during which we directly
measure the medium access time required by all protocols.
We can thus show that, in terms of involved network load,
TrAM considerably outperforms existing solutions, such as
Narada or PAST-DM. As a direct consequence, TrAM offers
increased scalability in terms of data traffic emission. We
underlay this by referring to measurements of standard values,
such as achieved delivery ratios and latencies: Here, TrAM
performs at least as good as existing solutions.

In future work we plan to further improve protocol scalabili-
ty in terms of data traffic emission. Standard application-layer
multicast protocols use unicast messages for data forwarding.
Unicasts however suffer from scalability issues, especially in
MANET scenarios with increased group member density. We
thus plan to use limited broadcasts not only for the overlay’s
maintenance, but also for data delivery. As broadcasts however
are not covered by MAC retransmissions, they are more
fragile regarding radio interference. We will provide detailed
evaluations to show the pros and cons of broadcasting data.
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